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1. INTRODUCTION: THE KPZ EQUATION
The KPZ equation
(1) Oh = 102h + L(0,h)? +¢ t>0, 2 €T,

where ¢ is a space-time white noise, appears as a space-time scaling limit
of the fluctuations of weakly asymmetric microscopic models. Since the
solution h of the equation (1) is expected to have a regularity (1)~ i.e. 1 —&
for every k > 0 in spatial variable, the square term is ill-posed. Instead, the
Cole-Hopf solution of the KPZ equation is defined by hc = log Z, where

Z is the solution of the multiplicative stochastic heat equation
WZ = 3027 + ZE.
At formal level, It0’s formula yields that h = hgp solves the equation
Oh = 302h + L{(0,h)* — o0} + &

This heuristic equation should be reformulated into the approximation
(2) OphS = JO7h + 1{(0:h)* — ¢} + &,
where (¢, z) = (£(t) * n°)(z) is a smeared noise with an even mollifier
n°(x) = e (e 'z) (e > 0), and ¢ = [[n]|7. = e nll7.-

Recently developed theories of regularity structures [5], or paracontrolled
calculus [2] constructed the well-posedness theory for the KPZ equation
independent to the probability space. Let C? be the completion of the set

of smooth functions on T under the Bﬁom(ﬂ‘) norm and C? = C% U {A} be
the extended space with a “death point” A.

Theorem 1.1 ([4, 3, 7]). Let 6 € (0,3). There exist a Polish space M, a

lower semicontinuous map Ty : C% x M — (0, 0], and a map
S:C% x M3 (h,E) = h e C([0,0),C?)

such that, hlpr,) € C([0,1.),C%), hli1,00) = A, the map S is continuous
with respect to the C([0,T],C%)-norm on the set {(ho,Z);Tu(ho,Z) > T}
for every T > 0, and for every probability space (2, P) (which admits a
space-time white noise) there exists a measurable map = : Q@ — M such that

hcu(ho,w) = S(ho, E(w)) P-a.s. w,
where hem(ho,w) is the Cole-Hopf solution with initial value hg € C?. More-

over, there exists a measurable map = : @ — M such that lim o Z° = E
in probability, and h(hg,w) = S(ho,Z(w)) solves (2) with initial value

h() € Ce.



Theorem 1.1 and the properties of the Cole-Hopf solution imply that
T (ho,Z(w)) = o0, P-a.s. w. On the other hand, the fact that T\ (ho, Z) = oo
for every (hg,Z) € C? x M was shown by Gubinelli and Perkowski [3] by
using the Cole-Hopf transform again.

2. MAIN RESULT: THE COUPLED KPZ EQUATIONS

Let d € N. For given constants {ng}lga,ﬂqu and the independent
space-time white noises {£“}1<4<q, we consider the coupled KPZ equations

(3)  Oh™ = 202h™ + 3T 0,k 0,07 +€%, 1<a<d, t>0, z€T,

where the summation symbol Y over (3,7) is omitted. Such system nat-
urally appears as a scaling limit of microscopic systems with d (local) con-
served quantities. As with (1), the ill-posed equation (3) should be refor-
mulated into the approximation

(4) Oh* = %8§h6’a + %ng(axhe’ﬁaxheﬁ _ 02557 _ Ce,ﬁv) e

where C¢ = (C%P7)5., is a matrix behaving as O(|loge|) in general. It is
not difficult to show the similar well-posedness result to Theorem 1.1 for the
coupled equations, except for the existence of global-in-time solution like
the Cole-Hopf solution.

In order to obtain the global existence, we assume the symmetry condition

(5) Iy, =T =T0

Then indeed we can choose C° = 0. Under the condition (5), the distribution
p of (0,B%)q, where (B®), is the d-tuple of independent Brownian bridges
on T, is invariant under the process (9;h%),, where h is the limit point of
the sequence (k) defined by (4). This implies that for u-a.e. ug € (C~1)% =
CP~1(T,R%), it holds that

(6) Ti(ho, E(w)) = 00, P-a.s. w

for every hg such that d,ho = uo ([1]). By using the fact that the limit pro-
cess h is a strong Feller process on the space (C?)? ([6]), the global existence
(6) can be shown for every initial value.

Theorem 2.1 ([1, 6]). Let 6 € (0,1). Under the symmetry condition (5),
we have (6) for every hg € (C%).

REFERENCES

[1] T. FUuNAKI AND M. HOSHINO, A coupled KPZ equation, its two types of approzima-
tions and existence of global solutions, arXiv:1611.00498.

[2] M. GUBINELLI, P. IMKELLER, AND N. PERKOWSKI, Paracontrolled distributions and
singular PDEs, Forum Math. Pi 3 (2015), e6, 75pp.

[3] M. GUBINELLI AND N. PERKOWSKI, KPZ reloaded, arXiv:1508.03877.

[4] M. HAIRER, Solving the KPZ equation, Ann. Math, 178 (2013), 559-664.

[5] M. HAIRER, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269-
504.

[6] M. HAIRER AND J. MATTINGLY, The strong Feller property for singular stochastic
PDFEs, arXiv:1610.03415.

[7] M. HOSHINO, Paracontrolled calculus and Funaki-Quastel approzimation for the KPZ
equation, arXiv:1605.02624.

81



