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1. Introduction: the KPZ equation

The KPZ equation
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2 + ξ, t > 0, x ∈ T,(1)

where ξ is a space-time white noise, appears as a space-time scaling limit
of the fluctuations of weakly asymmetric microscopic models. Since the
solution h of the equation (1) is expected to have a regularity (12)

−, i.e. 1
2−κ

for every κ > 0 in spatial variable, the square term is ill-posed. Instead, the
Cole-Hopf solution of the KPZ equation is defined by hCH = logZ, where
Z is the solution of the multiplicative stochastic heat equation

∂tZ = 1
2∂

2
xZ + Zξ.

At formal level, Itô’s formula yields that h = hCH solves the equation
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This heuristic equation should be reformulated into the approximation
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ǫ)2 − cǫη}+ ξǫ,(2)

where ξǫ(t, x) = (ξ(t) ∗ ηǫ)(x) is a smeared noise with an even mollifier
ηǫ(x) = ǫ−1η(ǫ−1x) (ǫ > 0), and cǫη = ‖η

ǫ‖2
L2 = ǫ−1‖η‖2

L2 .
Recently developed theories of regularity structures [5], or paracontrolled

calculus [2] constructed the well-posedness theory for the KPZ equation
independent to the probability space. Let Cθ be the completion of the set
of smooth functions on T under the Bθ

∞,∞(T) norm and C̄θ = Cθ ∪ {∆} be
the extended space with a “death point” ∆.

Theorem 1.1 ([4, 3, 7]). Let θ ∈ (0, 12). There exist a Polish space M, a

lower semicontinuous map T∗ : C
θ ×M→ (0,∞], and a map

S : Cθ ×M ∋ (h0,Ξ) 7→ h ∈ C([0,∞), C̄θ)

such that, h|[0,T∗) ∈ C([0, T∗), C
θ), h|[T∗,∞) ≡ ∆, the map S is continuous

with respect to the C([0, T ], Cθ)-norm on the set {(h0,Ξ) ;T∗(h0,Ξ) > T}
for every T > 0, and for every probability space (Ω, P ) (which admits a
space-time white noise) there exists a measurable map Ξ : Ω→M such that

hCH(h0, ω) = S(h0,Ξ(ω)) P -a.s. ω,

where hCH(h0, ω) is the Cole-Hopf solution with initial value h0 ∈ C
θ. More-

over, there exists a measurable map Ξǫ : Ω → M such that limǫ↓0 Ξ
ǫ = Ξ

in probability, and hǫ(h0, ω) = S(h0,Ξ
ǫ(ω)) solves (2) with initial value

h0 ∈ C
θ.



Theorem 1.1 and the properties of the Cole-Hopf solution imply that
T∗(h0,Ξ(ω)) =∞, P -a.s. ω. On the other hand, the fact that T∗(h0,Ξ) =∞
for every (h0,Ξ) ∈ C

θ ×M was shown by Gubinelli and Perkowski [3] by
using the Cole-Hopf transform again.

2. Main result: the coupled KPZ equations

Let d ∈ N. For given constants {Γα
βγ}1≤α,β,γ≤d and the independent

space-time white noises {ξα}1≤α≤d, we consider the coupled KPZ equations
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β∂xh
γ + ξα, 1 ≤ α ≤ d, t > 0, x ∈ T,(3)

where the summation symbol
∑

over (β, γ) is omitted. Such system nat-
urally appears as a scaling limit of microscopic systems with d (local) con-
served quantities. As with (1), the ill-posed equation (3) should be refor-
mulated into the approximation
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where Cǫ = (Cǫ,βγ)β,γ is a matrix behaving as O(| log ǫ|) in general. It is
not difficult to show the similar well-posedness result to Theorem 1.1 for the
coupled equations, except for the existence of global-in-time solution like
the Cole-Hopf solution.
In order to obtain the global existence, we assume the symmetry condition

Γα
βγ = Γα

γβ = Γβ
αγ .(5)

Then indeed we can choose Cǫ = 0. Under the condition (5), the distribution
µ of (∂xB

α)α, where (B
α)α is the d-tuple of independent Brownian bridges

on T, is invariant under the process (∂xh
α)α, where h is the limit point of

the sequence (hǫ) defined by (4). This implies that for µ-a.e. u0 ∈ (C
θ−1)d =

Cθ−1(T,Rd), it holds that

T∗(h0,Ξ(ω)) =∞, P -a.s. ω(6)

for every h0 such that ∂xh0 = u0 ([1]). By using the fact that the limit pro-
cess h is a strong Feller process on the space (C̄θ)d ([6]), the global existence
(6) can be shown for every initial value.

Theorem 2.1 ([1, 6]). Let θ ∈ (0, 12). Under the symmetry condition (5),

we have (6) for every h0 ∈ (C
θ)d.
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